Compare commits

..

No commits in common. "main" and "presentation-01" have entirely different histories.

46 changed files with 385 additions and 279 deletions

2
.scalafmt.conf Normal file
View File

@ -0,0 +1,2 @@
version = 2.5.0
maxColumn = 120

View File

@ -0,0 +1,6 @@
package conversions
/**
* Implicit conversions for Identity.
*/
package object identity {}

View File

@ -0,0 +1,21 @@
package conversions
import data.{Cons, LispList, Nil}
import scala.annotation.tailrec
/**
* Implicit conversions for LispList.
*/
package object lisplist {
implicit def lispListToList[A](lispList: LispList[A]): List[A] = {
@tailrec
def go(acc: List[A], l: LispList[A]): List[A] =
l match {
case Cons(car, cdr) => go(car +: acc, cdr)
case Nil => acc
}
go(List(), lispList).reverse
}
}

View File

@ -1,19 +0,0 @@
import data._
/**
* Implicit conversions
*/
package object conversions {
/**
* Wholesale conversion of a LispList to a Scala Seq
*/
implicit def convertToSeq[A](list: LispList[A]): Seq[A] = ???
/**
* Wholesale conversion of a LispList to a Scala List
*/
implicit def convertToList[A](list: LispList[A]): List[A] = ???
// TODO what other conversions?
}

View File

@ -0,0 +1,6 @@
package conversions
/**
* Implicit conversions for Schrodinger.
*/
package object schrodinger {}

View File

@ -0,0 +1,6 @@
package conversions
/**
* Implicit conversions for State.
*/
package object state {}

View File

@ -0,0 +1,6 @@
package conversions
/**
* Implicit conversions for Superposition.
*/
package object superposition {}

View File

@ -1,11 +1,14 @@
/**
* DO NOT MODIFY THIS FILE. All exercises are performed using implicits only.
*/
package data package data
/** /**
* A Lisply-named representation of a singly-linked list and an analogue to * A Lisply-named representation of a singly-linked list and an analogue to
* Scala's immutable List. This is a special case of any type A where there * Scala's immutable List. This is a special case of any type A where there
* exists a nondeterministic selection of its values that must be specially * exists a nondeterministic selection of its values that must be specially
* handled such that the number of values is inconsequential. * handled such that the number of values is inconsequential.
*/ */
sealed trait LispList[+A] { sealed trait LispList[+A] {
def car: A def car: A
@ -13,9 +16,9 @@ sealed trait LispList[+A] {
def cdr: LispList[A] def cdr: LispList[A]
} }
case class LispCons[+A](car: A, cdr: LispList[A]) extends LispList[A] case class Cons[+A](car: A, cdr: LispList[A]) extends LispList[A]
case object LispNil extends LispList[Nothing] { case object Nil extends LispList[Nothing] {
def car: Nothing = throw new Exception("LispList with no car!") def car: Nothing = throw new Exception("LispList with no car!")
@ -24,10 +27,7 @@ case object LispNil extends LispList[Nothing] {
object LispList { object LispList {
def apply[A](): LispList[A] = LispNil def apply[A](items: A*): LispList[A] = items.foldRight(LispList[A]())(Cons[A])
def apply[A](items: A*): LispList[A] = items.foldRight(LispList[A]())(LispCons[A]) def apply[A](): LispList[A] = Nil
// TODO how to make a Seq
// def unapplySeq[A](list: LispList[A]): Option[Seq[A]] = Some(list.toSeq)
} }

View File

@ -1,17 +1,26 @@
/**
* DO NOT MODIFY THIS FILE. All exercises are performed using implicits only.
*/
package data package data
/** /**
* Schrodinger is an analogue to Scala's Option and a special case of * Schrodinger is an analogue to Scala's Option and a special case of
* Superposition where a cat may or may not exist and the cat must be specially * Superposition where a cat may or may not exist and the cat must be specially
* handled as if it were simultaneously alive or dead. * handled as if it were simultaneously alive or dead.
*/ */
sealed trait Schrodinger[+A] { sealed trait Schrodinger[+A] {
def cat: A def cat: A
} }
/**
* The cat is here for pets and he is fluffy.
*/
case class Alive[+A](cat: A) extends Schrodinger[A] case class Alive[+A](cat: A) extends Schrodinger[A]
/**
* :(
*/
case object Dead extends Schrodinger[Nothing] { case object Dead extends Schrodinger[Nothing] {
def cat: Nothing = throw new Exception("He's dead Jim!") def cat: Nothing = throw new Exception("He's dead Jim!")

View File

@ -1,27 +1,33 @@
/**
* DO NOT MODIFY THIS FILE. All exercises are performed using implicits only.
*/
package data package data
/** /**
* Superposition is an analogue to Scala's Either and \a special case of a * Superposition is an analogue to Scala's Either and a special case of a
* product (any type of A × B) where only A or B exists, but must be treated * Product (any type of A × B) where only A or B exists, but must be treated
* specially as though it could be either one. * specially as though it could be either one but not both.
*/ */
sealed trait Superposition[+A, +B] sealed trait Superposition[+A, +B] {
def downside: A
def upside: B
}
/** /**
* Implied negative case of the Superposition. This is probably not the one you * Implied negative case of the Superposition. This is probably not the one you
* want. * want.
* */
* @param value The thing you probably don't want. case class Downside[+A, +B](downside: A) extends Superposition[A, B] {
* @tparam A Downside type
* @tparam B Upside type def upside = throw new Exception("I got the downside!")
*/ }
case class Downside[+A, +B](value: A) extends Superposition[A, B]
/** /**
* Implied positive case of the Superposition. This is usually the one you want. * Implied positive case of the Superposition. This is usually the one you want.
* */
* @param value The thing you usually want. case class Upside[+A, +B](upside: B) extends Superposition[A, B] {
* @tparam A Downside type
* @tparam B Upside type def downside = throw new Exception("I got the upside!")
*/ }
case class Upside[+A, +B](value: B) extends Superposition[A, B]

View File

@ -1,17 +1,21 @@
/**
* DO NOT MODIFY THIS FILE. All exercises are performed using implicits only.
*/
package object data { package object data {
/** /**
* A modeled stateful computation that for any state of type S there exists * A structure for any type S for which a function exists that derives from
* a computation that derives from S a product of type A and a successive * S a product of a value of itself and a value of type A. This can model
* instance of S representing the state of the next computation. * stateful computation where state S is given to a function which produces
* * a potentially-changed state and the result of the computation.
* @tparam S The state type *
* @tparam A The value returned by the operation * @tparam S The state type
*/ * @tparam A The type returned by the operation
*/
type State[S, +A] = S => (S, A) type State[S, +A] = S => (S, A)
/** /**
* A special case of any type A that is just itself. * A special case of any type A that is simply itself.
*/ */
type Identity[+A] = A type Identity[+A] = A
} }

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Applicative operations.
*/
package object applicative {}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for ApplicativeError operations.
*/
package object applicativeError {}

View File

@ -1,8 +0,0 @@
package extensions
/**
* Implicit method extensions for flatMap().
*/
package object flatMap {
}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Functor operations.
*/
package object functor {}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Identity.
*/
package object identity {}

View File

@ -0,0 +1,20 @@
package extensions
import data.{Cons, LispList, Nil}
/**
* Extension methods for LispList.
*/
package object lisplist {
implicit class LispListOps[A](val lispList: LispList[A]) extends AnyVal {
import conversions.lisplist._
def asList: List[A] = lispListToList(lispList)
def length: Int =
lispList match {
case Cons(_, cdr) => 1 + LispListOps(cdr).length
case Nil => 0
}
}
}

View File

@ -1,29 +0,0 @@
package extensions
import data._
/**
* Implicit method extensions for map().
*/
package object map {
implicit class LispListOps[+A](val list: LispList[A]) extends AnyVal {
def map[B](f: A => B): LispList[B] = ???
}
implicit class SuperpositionOps[+A, +B](val fallible: Superposition[A, B]) extends AnyVal {
def map[C](f: B => C): Superposition[A, C] = ???
}
implicit class SchrodingerOps[+A](val possibly: Schrodinger[A]) extends AnyVal {
def map[B](f: A => B): Schrodinger[B] = ???
}
implicit class StateOps[S, +A](val state: State[S, A]) extends AnyVal {
def map[B](f: A => B): State[S, B] = ???
}
}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Monad operations.
*/
package object monad {}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for MonadError operations.
*/
package object monadError {}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Monoid operations.
*/
package object monoid {}

View File

@ -1,8 +0,0 @@
package extensions
/**
* Implicit method extensions for pure().
*/
package object pure {
}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Schrodinger.
*/
package object schrodinger {}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Semigroup operations.
*/
package object semigroup {}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for State.
*/
package object state {}

View File

@ -0,0 +1,6 @@
package extensions
/**
* Extension methods for Superposition.
*/
package object superposition {}

View File

@ -4,8 +4,8 @@ import data._
import typeclasses._ import typeclasses._
/** /**
* Typeclass instances for Identity * Typeclass instances for Identity
*/ */
package object identity { package object identity {
implicit val identityFunctor: Functor[Identity] = ??? implicit val identityFunctor: Functor[Identity] = ???

View File

@ -4,8 +4,8 @@ import data._
import typeclasses._ import typeclasses._
/** /**
* Typeclass instances for LispList * Typeclass instances for LispList
*/ */
package object lisplist { package object lisplist {
implicit val lispListFunctor: Functor[LispList] = ??? implicit val lispListFunctor: Functor[LispList] = ???

View File

@ -4,15 +4,16 @@ import data._
import typeclasses._ import typeclasses._
/** /**
* Typeclass instances for Schrodinger * Typeclass instances for Schrodinger
*/ */
package object schrodinger { package object schrodinger {
implicit val schrodingerFunctor: Functor[Schrodinger[*]] = ??? implicit val schrodingerFunctor: Functor[Schrodinger[*]] = ???
implicit val schrodingerApplicative: Applicative[Schrodinger[*]] = ??? implicit val schrodingerApplicative: Applicative[Schrodinger[*]] = ???
implicit def schrodingerApplicativeError[E]: ApplicativeError[Schrodinger[*], E] = ??? implicit def schrodingerApplicativeError[E]
: ApplicativeError[Schrodinger[*], E] = ???
implicit val schrodingerMonad: Monad[Schrodinger[*]] = ??? implicit val schrodingerMonad: Monad[Schrodinger[*]] = ???

View File

@ -4,15 +4,16 @@ import data._
import typeclasses._ import typeclasses._
/** /**
* Typeclass instances for State * Typeclass instances for State
*/ */
package object state { package object state {
implicit def stateFunctor[S]: Functor[State[S, *]] = ??? implicit def stateFunctor[S]: Functor[State[S, *]] = ???
implicit def stateApplicative[S]: Applicative[State[S, *]] = ??? implicit def stateApplicative[S]: Applicative[State[S, *]] = ???
implicit def stateApplicativeError[S, E]: ApplicativeError[State[S, *], E] = ??? implicit def stateApplicativeError[S, E]: ApplicativeError[State[S, *], E] =
???
implicit def stateMonad[S]: Monad[State[S, *]] = ??? implicit def stateMonad[S]: Monad[State[S, *]] = ???

View File

@ -4,21 +4,25 @@ import data._
import typeclasses._ import typeclasses._
/** /**
* Typeclass instances for Superposition * Typeclass instances for Superposition
*/ */
package object superposition { package object superposition {
implicit def superpositionFunctor[A]: Functor[Superposition[A, *]] = ??? implicit def superpositionFunctor[A]: Functor[Superposition[A, *]] = ???
implicit def superpositionApplicative[A]: Applicative[Superposition[A, *]] = ??? implicit def superpositionApplicative[A]: Applicative[Superposition[A, *]] =
???
implicit def superpositionApplicativeError[A]: ApplicativeError[Superposition[A, *], A] = ??? implicit def superpositionApplicativeError[A]
: ApplicativeError[Superposition[A, *], A] = ???
implicit def superpositionMonad[A]: Monad[Superposition[A, *]] = ??? implicit def superpositionMonad[A]: Monad[Superposition[A, *]] = ???
implicit def superpositionMonadError[A]: MonadError[Superposition[A, *], A] = ??? implicit def superpositionMonadError[A]: MonadError[Superposition[A, *], A] =
???
implicit def superpositionMonoid[A, B]: Monoid[Superposition[A, B]] = ??? implicit def superpositionMonoid[A, B]: Monoid[Superposition[A, B]] = ???
implicit def superpositionSemigroup[A, B]: Semigroup[Superposition[A, B]] = ??? implicit def superpositionSemigroup[A, B]: Semigroup[Superposition[A, B]] =
???
} }

View File

@ -1,8 +0,0 @@
package ops
/**
* Typeclass extension methods for Identity
*/
package object identity {
}

View File

@ -1,8 +0,0 @@
package ops
/**
* Typeclass extension methods for LispList
*/
package object lisplist {
}

View File

@ -1,8 +0,0 @@
package ops
/**
* Typeclass extension methods for Schrodinger.
*/
package object schrodinger {
}

View File

@ -1,8 +0,0 @@
package ops
/**
* Typeclass extension methods for State.
*/
package object state {
}

View File

@ -1,8 +0,0 @@
package ops
/**
* Typeclass extension methods for Superposition.
*/
package object superposition {
}

View File

@ -1,24 +1,24 @@
package typeclasses package typeclasses
/** /**
* Defines the Applicative operations for any type of kind F[_]. Applicative * Defines the Applicative operations for any type of kind F[_]. Applicative
* is a special case of Functor that can apply a function lifted into F[_] to * is a special case of Functor that can apply a function lifted into F[_] to
* a value also lifted into F[_]. * a value also lifted into F[_].
*/ */
trait Applicative[F[_]] extends Functor[F] { trait Applicative[F[_]] extends Functor[F] {
/** /**
* Lift a value into F[_]. * Lift a value into F[_].
*/ */
def pure[A](a: A): F[A] = ??? def pure[A](a: A): F[A] = ???
/** /**
* Lift a value into F[_] and apply it to a lifted function. * Lift a value into F[_] and apply it to a lifted function.
*/ */
def ap[A, B](ff: F[A => B])(fa: F[A]): F[B] def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]
/** /**
* This can be defined in terms of ap and pure alone, try it out! * This can be defined in terms of ap and pure alone, try it out!
*/ */
override def map[A, B](fa: F[A])(f: A => B): F[B] = ??? override def map[A, B](fa: F[A])(f: A => B): F[B] = ???
} }

View File

@ -1,25 +1,25 @@
package typeclasses package typeclasses
/** /**
* Defines the ApplicativeError operations for any type of kind F[_] for error * Defines the ApplicativeError operations for any type of kind F[_] for error
* type E. ApplicativeError is a special case of Applicative where the type * type E. ApplicativeError is a special case of Applicative where the type
* kind of F[_] may represent a superposition of "success" or "error" cases * kind of F[_] may represent a superposition of "success" or "error" cases
* and affords operations to create and recover these error cases. * and affords operations to create and recover these error cases.
*/ */
trait ApplicativeError[F[_], E] extends Applicative[F] { trait ApplicativeError[F[_], E] extends Applicative[F] {
/** /**
* Lift an error handler into F[_] to apply to E. * Lift an error handler into F[_] to apply to E.
*/ */
def handleError[A](fa: F[A])(f: E => A): F[A] def handleError[A](fa: F[A])(f: E => A): F[A]
/** /**
* Lift an error handler into F[_] to apply to E, returning a lifted result. * Lift an error handler into F[_] to apply to E, returning a lifted result.
*/ */
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A] def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
/** /**
* A special case of pure() which lifts an error E into F[_]. * A special case of pure() which lifts an error E into F[_].
*/ */
def raiseError[A](e: E): F[A] = ??? def raiseError[A](e: E): F[A] = ???
} }

View File

@ -1,13 +1,13 @@
package typeclasses package typeclasses
/** /**
* Defines the Functor operations for any type of kind F[_]. Functors allow for * Defines the Functor operations for any type of kind F[_]. Functors allow for
* a function to be applied to a value lifted into F[_]. * a function to be applied to a value lifted into F[_].
*/ */
trait Functor[F[_]] { trait Functor[F[_]] {
/** /**
* Applies a lifted value to a function. * Applies a lifted value to a function.
*/ */
def map[A, B](fa: F[A])(f: A => B): F[B] def map[A, B](fa: F[A])(f: A => B): F[B]
} }

View File

@ -1,17 +1,17 @@
package typeclasses package typeclasses
/** /**
* Defines the Monad operations for any type of kind F[_]. A Monad is a special * Defines the Monad operations for any type of kind F[_]. A Monad is a special
* case of Applicative where the application of a function to a lifted value * case of Applicative where the application of a function to a lifted value
* in F[_] may itself return a lifted value. This is especially powerful because * in F[_] may itself return a lifted value. This is especially powerful because
* the lifted result may represent a case against which no further operations * the lifted result may represent a case against which no further operations
* may be performed, which can model short-circuiting on errors! * may be performed, which can model short-circuiting on errors!
*/ */
trait Monad[F[_]] extends Applicative[F] { trait Monad[F[_]] extends Applicative[F] {
/** /**
* Lift an apply a function into F[_] and apply it to the value. The function * Lift an apply a function into F[_] and apply it to the value. The function
* returns its own lifted result. * returns its own lifted result.
*/ */
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B] def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
} }

View File

@ -3,29 +3,29 @@ package typeclasses
import data.Superposition import data.Superposition
/** /**
* Defines the MonadOperations operations for any type of kind F[_] for error * Defines the MonadOperations operations for any type of kind F[_] for error
* type E. MonadError is a special case of ApplicativeError and Monad that * type E. MonadError is a special case of ApplicativeError and Monad that
* further augments error handling operations. * further augments error handling operations.
*/ */
trait MonadError[F[_], E] extends Monad[F] with ApplicativeError[F, E] { trait MonadError[F[_], E] extends Monad[F] with ApplicativeError[F, E] {
/** /**
* Replaces A with E if the lifted A does not satisfy the predicate. * Replaces A with E if the lifted A does not satisfy the predicate.
*/ */
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A] def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
/** /**
* Replaces A with E by means of A if the lifted A does not satisfy the predicate. * Replaces A with E by means of A if the lifted A does not satisfy the predicate.
*/ */
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A] def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
/** /**
* Applies a partial function to the E, if any. * Applies a partial function to the E, if any.
*/ */
def adaptError[A](fa: F[A])(pf: PartialFunction[E, E]): F[A] def adaptError[A](fa: F[A])(pf: PartialFunction[E, E]): F[A]
/** /**
* Inverse of ApplicativeError attempt(). * Inverse of ApplicativeError attempt().
*/ */
def rethrow[A, EE <: E](fa: F[Superposition[EE, A]]): F[A] def rethrow[A, EE <: E](fa: F[Superposition[EE, A]]): F[A]
} }

View File

@ -1,16 +1,16 @@
package typeclasses package typeclasses
/** /**
* A Monoid is a special case of a Semigroup for which an element of A, when * A Monoid is a special case of a Semigroup for which an element of A, when
* applied to any other element of A in any order, returns that other element. * applied to any other element of A in any order, returns that other element.
* It forms an identity value with which its application merely returns the * It forms an identity value with which its application merely returns the
* identity of its associated operand, similar in concept to the identity * identity of its associated operand, similar in concept to the identity
* function. * function.
*/ */
trait Monoid[A] extends Semigroup[A] { trait Monoid[A] extends Semigroup[A] {
/** /**
* The identity of A. * The identity of A.
*/ */
def empty: A def empty: A
} }

View File

@ -1,15 +1,15 @@
package typeclasses package typeclasses
/** /**
* A semigroup is a special case of a binary operation that is both associative * A semigroup is a special case of a binary operation that is both associative
* and for any two A the operation returns another member of A. In a sense, the * and for any two A the operation returns another member of A. In a sense, the
* Semigroup operation can be used from any two starting members of A to produce * Semigroup operation can be used from any two starting members of A to produce
* all successive members of A. * all successive members of A.
*/ */
trait Semigroup[A] { trait Semigroup[A] {
/** /**
* Binary, associative operation against two of A to produce another A. * Binary, associative operation against two of A to produce another A.
*/ */
def <>(x: A, b: A): A def <>(x: A, b: A): A
} }

View File

@ -0,0 +1,56 @@
package conversions
import data.{Cons, LispList, Nil}
import org.scalatest.matchers.should.Matchers
import org.scalatest.wordspec.AnyWordSpecLike
import java.io.ByteArrayOutputStream
class LispListSpec extends AnyWordSpecLike with Matchers {
"LispList" can {
/**
* Exercise: Implicit Conversions
*/
"convert types" which {
val lispList: LispList[Int] = Cons(1, Cons(2, Cons(3, Nil)))
def lengthAsList[A](list: List[A]): Int = list.length
"become a List" in {
import conversions.lisplist._
lengthAsList(lispList) shouldBe 3
}
"become a Seq, but loudly" in {
val out = new ByteArrayOutputStream()
Console.withOut(out) {
pending
//lengthAsSeq(lispList) shouldBe 3
}
out.toString should contain("THREE OF THEM!")
}
}
/**
* Exercise: Explicit conversions with extension methods
*/
"explicitly convert types" which {
val lispList = Cons(1, Cons(2, Cons(3, Nil)))
"asList" can {
import extensions.lisplist._
"explicitly become a List" in {
lispList.asList shouldBe List(1, 2, 3)
}
}
"asSeq" can {
"explicitly become a Seq" in {
pending
//lispList.asList should eq(Seq(1, 2, 3))
}
}
}
}
}

View File

@ -0,0 +1,48 @@
package extensions
import data.{Cons, Nil}
import org.scalatest.matchers.should.Matchers
import org.scalatest.wordspec.AnyWordSpecLike
class LispListSpec extends AnyWordSpecLike with Matchers {
"LispList" can {
/**
* Exercise: Create a length method
*/
"length" which {
"returns 0 if the list is Nil" in {
import extensions.lisplist._
val lispList = Nil
lispList.length shouldBe 0
}
"returns the length of the list" in {
import conversions.lisplist._
val lispList = Cons(1, Cons(2, Cons(3, Nil)))
lispList.map(_ * 2) shouldBe 0
}
}
/**
* Exercise: Create a schrodingersCar method
*/
"schrodingersCar" which {
"returns Dead" when {
"list is Nil" in {
val lispList = Nil
pending
//lispList.schrodingersCar should eq(Dead)
}
}
"returns Alive containing the first value" when {
"the list is not Nil" in {
val lispList = Cons("Ferrari", Cons("Lamborghini", Cons("Honda Fit", Nil)))
pending
//lispList.schrodingersCar should eq(Alive("Ferrari"))
}
}
}
}
}

View File

@ -1,52 +0,0 @@
package extensions
import org.scalatest.matchers.should.Matchers
import org.scalatest.wordspec.AnyWordSpecLike
class MapSpec extends AnyWordSpecLike with Matchers {
"ConsList" can {
"map" which {
"transforms every element it contains" in {
pending
}
}
}
"Superposition" can {
"map" which {
"ignores the value of Downside" in {
pending
}
"transforms the value of Upside" in {
pending
}
}
}
"Schrodinger" can {
"map" which {
"ignores Dead cat" in {
pending
}
"transforms Alive cat" in {
pending
}
}
}
"State" can {
"map" which {
"transforms the result of a stateful computation" in {
pending
}
}
}
"Identity" can {
"map" which {
"transforms itself" in {
pending
}
}
}
}