Adding comments to describe the hanoi algorithm (dunno if it's correct, but it works on paper)
This commit is contained in:
parent
e2b81e0411
commit
543ab9e7c3
@ -2,47 +2,93 @@ module Homework.Ch01.Hanoi where
|
|||||||
|
|
||||||
import Data.Maybe
|
import Data.Maybe
|
||||||
|
|
||||||
data Peg = Peg {pegLabel :: String, pegDiscs :: [Disc]} deriving (Eq, Show)
|
-- | Move pegs from the first peg to the last peg.
|
||||||
|
-- The moves that were made are returned, but an error is returned if a move
|
||||||
data Pegs = Pegs {pegsPegA :: Peg, pegsPegB :: Peg, pegsPegC :: Peg} deriving (Eq, Show)
|
-- can't be made.
|
||||||
|
hanoi :: String -> String -> String -> Int -> Either String [Move]
|
||||||
data Move = Move {moveFrom :: String, moveTo :: String} deriving (Eq, Show)
|
hanoi pegLabelA pegLabelB pegLabelC numDiscs =
|
||||||
|
let -- CONSTRUCT a set of pegs given the provided arguments
|
||||||
data Disc = Disc {discSize :: Int} deriving (Eq, Ord, Show)
|
pegsStart = initPegs pegLabelA pegLabelB pegLabelC numDiscs
|
||||||
|
-- Make a move
|
||||||
hanoi :: Int -> String -> String -> String -> Either String [Move]
|
(movesMade, _) = move pegsStart
|
||||||
hanoi numDiscs pegLabelA pegLabelB pegLabelC =
|
in -- Cheat the return for now, assume that movesMade is present for TDD
|
||||||
let pegs =
|
Right [fromJust movesMade]
|
||||||
Pegs
|
|
||||||
{ pegsPegA = fillPeg pegLabelA numDiscs,
|
|
||||||
pegsPegB = emptyPeg pegLabelB,
|
|
||||||
pegsPegC = emptyPeg pegLabelC
|
|
||||||
}
|
|
||||||
in Right . return . fromJust . fst $ move pegs
|
|
||||||
|
|
||||||
|
-- | Make a move
|
||||||
|
-- Given some pegs, make a move if a move is possible and return the pegs with
|
||||||
|
-- the move that was made.
|
||||||
|
--
|
||||||
|
-- The return of this function is a 2-tuple of ($THE_MOVE, $PEGS_AFTER_MOVE).
|
||||||
move :: Pegs -> (Maybe Move, Pegs)
|
move :: Pegs -> (Maybe Move, Pegs)
|
||||||
move pegs =
|
move pegs =
|
||||||
let pegA@(Peg firstPegLabel firstPegDiscs) = pegsPegA pegs
|
let -- pull apart the first peg
|
||||||
|
pegA@(Peg firstPegLabel firstPegDiscs) = pegsPegA pegs
|
||||||
|
-- pull apart the last peg
|
||||||
pegC@(Peg lastPegLabel lastPegDiscs) = pegsPegC pegs
|
pegC@(Peg lastPegLabel lastPegDiscs) = pegsPegC pegs
|
||||||
|
-- get the smallest disc from the first peg
|
||||||
firstPegDisc = last firstPegDiscs
|
firstPegDisc = last firstPegDiscs
|
||||||
|
-- get the smallest disk from the last peg
|
||||||
lastPegDisc = last lastPegDiscs
|
lastPegDisc = last lastPegDiscs
|
||||||
|
-- the disc from the first peg can move to the last peg if it is smaller
|
||||||
|
-- than the last peg's smallest disc
|
||||||
canMove = firstPegDisc < lastPegDisc
|
canMove = firstPegDisc < lastPegDisc
|
||||||
in if canMove
|
in -- return a tuple of (move made, pegs after move)
|
||||||
|
if canMove
|
||||||
then
|
then
|
||||||
( Just $ Move firstPegLabel lastPegLabel,
|
( -- return the move made
|
||||||
|
Just $
|
||||||
|
Move
|
||||||
|
{ moveFrom = firstPegLabel,
|
||||||
|
moveTo = lastPegLabel
|
||||||
|
},
|
||||||
|
-- modify the pegs to reflect the move
|
||||||
pegs
|
pegs
|
||||||
{ pegsPegA = pegA {pegDiscs = init firstPegDiscs},
|
{ -- Retain all discs but the last disc in peg A
|
||||||
|
pegsPegA = pegA {pegDiscs = init firstPegDiscs},
|
||||||
|
-- Append peg A's last disk to the end of peg C's discs
|
||||||
pegsPegC = pegC {pegDiscs = lastPegDiscs <> [firstPegDisc]}
|
pegsPegC = pegC {pegDiscs = lastPegDiscs <> [firstPegDisc]}
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
else (Nothing, pegs)
|
else
|
||||||
|
( -- no move can be made, so no move is returned
|
||||||
|
Nothing,
|
||||||
|
-- return the pegs as they are
|
||||||
|
pegs
|
||||||
|
)
|
||||||
|
|
||||||
fillPeg :: String -> Int -> Peg
|
-- A set of pegs ordered from start to finish.
|
||||||
fillPeg label numDisks =
|
data Pegs = Pegs {pegsPegA :: Peg, pegsPegB :: Peg, pegsPegC :: Peg} deriving (Eq, Show)
|
||||||
Peg
|
|
||||||
{ pegLabel = label,
|
-- CONSTRUCT a set of pegs with their labels and number of discs to fill the first peg with
|
||||||
pegDiscs = Disc <$> reverse [1 .. numDisks]
|
initPegs :: String -> String -> String -> Int -> Pegs
|
||||||
|
initPegs pegLabelA pegLabelB pegLabelC numDiscs =
|
||||||
|
Pegs
|
||||||
|
{ pegsPegA = fillPeg pegLabelA numDiscs,
|
||||||
|
pegsPegB = emptyPeg pegLabelB,
|
||||||
|
pegsPegC = emptyPeg pegLabelC
|
||||||
}
|
}
|
||||||
|
|
||||||
|
-- A peg is labeled and contains a stack of discs
|
||||||
|
data Peg = Peg {pegLabel :: String, pegDiscs :: [Disc]} deriving (Eq, Show)
|
||||||
|
|
||||||
|
-- CONSTRUCT a new peg with a label and number of disks to fill it with
|
||||||
|
fillPeg :: String -> Int -> Peg
|
||||||
|
fillPeg label numDiscs =
|
||||||
|
Peg
|
||||||
|
{ pegLabel = label,
|
||||||
|
pegDiscs = stackDiscs numDiscs
|
||||||
|
}
|
||||||
|
|
||||||
|
-- CONSTRUCT an empty peg with a label
|
||||||
emptyPeg :: String -> Peg
|
emptyPeg :: String -> Peg
|
||||||
emptyPeg label = Peg {pegLabel = label, pegDiscs = []}
|
emptyPeg label = Peg {pegLabel = label, pegDiscs = []}
|
||||||
|
|
||||||
|
-- A Disc has a size.
|
||||||
|
data Disc = Disc {discSize :: Int} deriving (Eq, Ord, Show)
|
||||||
|
|
||||||
|
-- CONSTRUCT a stack of discs
|
||||||
|
stackDiscs :: Int -> [Disc]
|
||||||
|
stackDiscs numDiscs = Disc <$> reverse [1 .. numDiscs]
|
||||||
|
|
||||||
|
-- A move has the peg that the disc was moved from and the peg it was moved to
|
||||||
|
data Move = Move {moveFrom :: String, moveTo :: String} deriving (Eq, Show)
|
||||||
|
@ -5,26 +5,89 @@ import Test.Hspec
|
|||||||
|
|
||||||
spec :: Spec
|
spec :: Spec
|
||||||
spec = describe "Hanoi" $ do
|
spec = describe "Hanoi" $ do
|
||||||
|
-- Testing the solver function
|
||||||
describe "hanoi" $ do
|
describe "hanoi" $ do
|
||||||
it "can solve for a stack of 1 and three pegs" $ do
|
-- helper to construct a hanoi function with preconfigured labels
|
||||||
hanoi 1 "a" "b" "c"
|
let hanoiOf = hanoi "a" "b" "c"
|
||||||
|
|
||||||
|
it "can solve for a stack of 1 disc" $ do
|
||||||
|
hanoiOf 1 -- a@[1] b@[] c@[]
|
||||||
`shouldBe` Right
|
`shouldBe` Right
|
||||||
[Move "a" "c"]
|
[ Move "a" "c" -- a@[] b@[] c@[1]
|
||||||
it "can solve for stack of 3 and three pegs" $ do
|
|
||||||
hanoi 3 "a" "b" "c"
|
|
||||||
`shouldBe` Right
|
|
||||||
[ Move "a" "c",
|
|
||||||
Move "a" "b",
|
|
||||||
Move "c" "b"
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
it "can solve for a stack of 2 discs" $ do
|
||||||
|
hanoiOf 2 -- a@[2, 1] b@[] c@[]
|
||||||
|
`shouldBe` Right
|
||||||
|
[ Move "a" "c", -- a@[2] b@[] c@[1]
|
||||||
|
Move "a" "b", -- a@[] b@[2] c@[1]
|
||||||
|
Move "c" "a", -- a@[1] b@[2] c@[]
|
||||||
|
Move "a" "c", -- a@[1] b@[] c@[2]
|
||||||
|
Move "a" "c" -- a@[] b@[] c@[2, 1]
|
||||||
|
]
|
||||||
|
|
||||||
|
it "can solve for a stack of 3 discs" $ do
|
||||||
|
hanoiOf 3 -- a@[3, 2, 1] b@[] c@[]
|
||||||
|
`shouldBe` Right
|
||||||
|
[ Move "a" "c", -- a@[3, 2] b@[] c@[1]
|
||||||
|
Move "a" "b", -- a@[3] b@[2] c@[1]
|
||||||
|
Move "c" "b", -- a@[3] b@[2, 1] c@[]
|
||||||
|
Move "a" "c", -- a@[] b@[2, 1] c@[3]
|
||||||
|
Move "b" "a", -- a@[1] b@[2] c@[3]
|
||||||
|
Move "b" "c", -- a@[1] b@[] c@[3, 2]
|
||||||
|
Move "a" "c" -- a@[] b@[] c@[3, 2, 1]
|
||||||
|
]
|
||||||
|
|
||||||
|
-- Testing individual moves
|
||||||
|
describe "move" $ do
|
||||||
|
it "moves the smallest peg from peg A to peg C if peg C's disc is bigger" $ do
|
||||||
|
let emptyPegs = initPegs "a" "b" "c" 0
|
||||||
|
pegs =
|
||||||
|
emptyPegs
|
||||||
|
{ pegsPegA = (emptyPeg "a") {pegDiscs = [Disc 3, Disc 1]},
|
||||||
|
pegsPegC = (emptyPeg "c") {pegDiscs = [Disc 2]}
|
||||||
|
}
|
||||||
|
-- run the function
|
||||||
|
(moveMade, pegsAfterMove) = move pegs
|
||||||
|
|
||||||
|
-- a move should have been made
|
||||||
|
moveMade `shouldBe` Just (Move "a" "c")
|
||||||
|
-- the pegs should have changed
|
||||||
|
pegsAfterMove
|
||||||
|
`shouldBe` pegs
|
||||||
|
{ pegsPegA = (pegsPegA pegs) {pegDiscs = [Disc 3]},
|
||||||
|
pegsPegC = (pegsPegC pegs) {pegDiscs = [Disc 2, Disc 1]}
|
||||||
|
}
|
||||||
|
|
||||||
|
-- Testing constructor for a set of pegs
|
||||||
|
describe "initPegs" $ do
|
||||||
|
it "creates pegs with labels and fills the first peg with discs" $ do
|
||||||
|
initPegs "a" "b" "c" 3
|
||||||
|
`shouldBe` Pegs
|
||||||
|
{ pegsPegA = Peg {pegLabel = "a", pegDiscs = [Disc 3, Disc 2, Disc 1]},
|
||||||
|
pegsPegB = Peg {pegLabel = "b", pegDiscs = []},
|
||||||
|
pegsPegC = Peg {pegLabel = "c", pegDiscs = []}
|
||||||
|
}
|
||||||
|
|
||||||
|
-- Testing constructor for a peg with discs
|
||||||
describe "fillPeg" $ do
|
describe "fillPeg" $ do
|
||||||
it "creates a list of disks from biggest to smallest" $ do
|
it "creates a list of disks from biggest to smallest" $ do
|
||||||
fillPeg "a" 3
|
fillPeg "a" 3
|
||||||
`shouldBe` Peg
|
`shouldBe` Peg
|
||||||
{ pegLabel = "a",
|
{ pegLabel = "a",
|
||||||
pegDiscs =
|
pegDiscs = [Disc 3, Disc 2, Disc 1]
|
||||||
[ Disc 3,
|
|
||||||
Disc 2,
|
|
||||||
Disc 1
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
-- Testing constructor for a peg without discs
|
||||||
|
describe "emptyPeg" $ do
|
||||||
|
it "creates an empty peg" $ do
|
||||||
|
emptyPeg "a"
|
||||||
|
`shouldBe` Peg
|
||||||
|
{ pegLabel = "a",
|
||||||
|
pegDiscs = []
|
||||||
|
}
|
||||||
|
|
||||||
|
-- Testing constructor for a stack of discs
|
||||||
|
describe "stackDiscs" $ do
|
||||||
|
it "should create a stack of discs from largest to smallest" $ do
|
||||||
|
stackDiscs 3 `shouldBe` [Disc 3, Disc 2, Disc 1]
|
||||||
|
Loading…
Reference in New Issue
Block a user