Adding comments to describe the hanoi algorithm (dunno if it's correct, but it works on paper)

This commit is contained in:
Logan McGrath 2021-10-06 14:49:48 -07:00
parent e2b81e0411
commit 543ab9e7c3
2 changed files with 150 additions and 41 deletions

View File

@ -2,47 +2,93 @@ module Homework.Ch01.Hanoi where
import Data.Maybe import Data.Maybe
data Peg = Peg {pegLabel :: String, pegDiscs :: [Disc]} deriving (Eq, Show) -- | Move pegs from the first peg to the last peg.
-- The moves that were made are returned, but an error is returned if a move
-- can't be made.
hanoi :: String -> String -> String -> Int -> Either String [Move]
hanoi pegLabelA pegLabelB pegLabelC numDiscs =
let -- CONSTRUCT a set of pegs given the provided arguments
pegsStart = initPegs pegLabelA pegLabelB pegLabelC numDiscs
-- Make a move
(movesMade, _) = move pegsStart
in -- Cheat the return for now, assume that movesMade is present for TDD
Right [fromJust movesMade]
-- | Make a move
-- Given some pegs, make a move if a move is possible and return the pegs with
-- the move that was made.
--
-- The return of this function is a 2-tuple of ($THE_MOVE, $PEGS_AFTER_MOVE).
move :: Pegs -> (Maybe Move, Pegs)
move pegs =
let -- pull apart the first peg
pegA@(Peg firstPegLabel firstPegDiscs) = pegsPegA pegs
-- pull apart the last peg
pegC@(Peg lastPegLabel lastPegDiscs) = pegsPegC pegs
-- get the smallest disc from the first peg
firstPegDisc = last firstPegDiscs
-- get the smallest disk from the last peg
lastPegDisc = last lastPegDiscs
-- the disc from the first peg can move to the last peg if it is smaller
-- than the last peg's smallest disc
canMove = firstPegDisc < lastPegDisc
in -- return a tuple of (move made, pegs after move)
if canMove
then
( -- return the move made
Just $
Move
{ moveFrom = firstPegLabel,
moveTo = lastPegLabel
},
-- modify the pegs to reflect the move
pegs
{ -- Retain all discs but the last disc in peg A
pegsPegA = pegA {pegDiscs = init firstPegDiscs},
-- Append peg A's last disk to the end of peg C's discs
pegsPegC = pegC {pegDiscs = lastPegDiscs <> [firstPegDisc]}
}
)
else
( -- no move can be made, so no move is returned
Nothing,
-- return the pegs as they are
pegs
)
-- A set of pegs ordered from start to finish.
data Pegs = Pegs {pegsPegA :: Peg, pegsPegB :: Peg, pegsPegC :: Peg} deriving (Eq, Show) data Pegs = Pegs {pegsPegA :: Peg, pegsPegB :: Peg, pegsPegC :: Peg} deriving (Eq, Show)
data Move = Move {moveFrom :: String, moveTo :: String} deriving (Eq, Show) -- CONSTRUCT a set of pegs with their labels and number of discs to fill the first peg with
initPegs :: String -> String -> String -> Int -> Pegs
data Disc = Disc {discSize :: Int} deriving (Eq, Ord, Show) initPegs pegLabelA pegLabelB pegLabelC numDiscs =
hanoi :: Int -> String -> String -> String -> Either String [Move]
hanoi numDiscs pegLabelA pegLabelB pegLabelC =
let pegs =
Pegs Pegs
{ pegsPegA = fillPeg pegLabelA numDiscs, { pegsPegA = fillPeg pegLabelA numDiscs,
pegsPegB = emptyPeg pegLabelB, pegsPegB = emptyPeg pegLabelB,
pegsPegC = emptyPeg pegLabelC pegsPegC = emptyPeg pegLabelC
} }
in Right . return . fromJust . fst $ move pegs
move :: Pegs -> (Maybe Move, Pegs) -- A peg is labeled and contains a stack of discs
move pegs = data Peg = Peg {pegLabel :: String, pegDiscs :: [Disc]} deriving (Eq, Show)
let pegA@(Peg firstPegLabel firstPegDiscs) = pegsPegA pegs
pegC@(Peg lastPegLabel lastPegDiscs) = pegsPegC pegs
firstPegDisc = last firstPegDiscs
lastPegDisc = last lastPegDiscs
canMove = firstPegDisc < lastPegDisc
in if canMove
then
( Just $ Move firstPegLabel lastPegLabel,
pegs
{ pegsPegA = pegA {pegDiscs = init firstPegDiscs},
pegsPegC = pegC {pegDiscs = lastPegDiscs <> [firstPegDisc]}
}
)
else (Nothing, pegs)
-- CONSTRUCT a new peg with a label and number of disks to fill it with
fillPeg :: String -> Int -> Peg fillPeg :: String -> Int -> Peg
fillPeg label numDisks = fillPeg label numDiscs =
Peg Peg
{ pegLabel = label, { pegLabel = label,
pegDiscs = Disc <$> reverse [1 .. numDisks] pegDiscs = stackDiscs numDiscs
} }
-- CONSTRUCT an empty peg with a label
emptyPeg :: String -> Peg emptyPeg :: String -> Peg
emptyPeg label = Peg {pegLabel = label, pegDiscs = []} emptyPeg label = Peg {pegLabel = label, pegDiscs = []}
-- A Disc has a size.
data Disc = Disc {discSize :: Int} deriving (Eq, Ord, Show)
-- CONSTRUCT a stack of discs
stackDiscs :: Int -> [Disc]
stackDiscs numDiscs = Disc <$> reverse [1 .. numDiscs]
-- A move has the peg that the disc was moved from and the peg it was moved to
data Move = Move {moveFrom :: String, moveTo :: String} deriving (Eq, Show)

View File

@ -5,26 +5,89 @@ import Test.Hspec
spec :: Spec spec :: Spec
spec = describe "Hanoi" $ do spec = describe "Hanoi" $ do
-- Testing the solver function
describe "hanoi" $ do describe "hanoi" $ do
it "can solve for a stack of 1 and three pegs" $ do -- helper to construct a hanoi function with preconfigured labels
hanoi 1 "a" "b" "c" let hanoiOf = hanoi "a" "b" "c"
it "can solve for a stack of 1 disc" $ do
hanoiOf 1 -- a@[1] b@[] c@[]
`shouldBe` Right `shouldBe` Right
[Move "a" "c"] [ Move "a" "c" -- a@[] b@[] c@[1]
it "can solve for stack of 3 and three pegs" $ do
hanoi 3 "a" "b" "c"
`shouldBe` Right
[ Move "a" "c",
Move "a" "b",
Move "c" "b"
] ]
it "can solve for a stack of 2 discs" $ do
hanoiOf 2 -- a@[2, 1] b@[] c@[]
`shouldBe` Right
[ Move "a" "c", -- a@[2] b@[] c@[1]
Move "a" "b", -- a@[] b@[2] c@[1]
Move "c" "a", -- a@[1] b@[2] c@[]
Move "a" "c", -- a@[1] b@[] c@[2]
Move "a" "c" -- a@[] b@[] c@[2, 1]
]
it "can solve for a stack of 3 discs" $ do
hanoiOf 3 -- a@[3, 2, 1] b@[] c@[]
`shouldBe` Right
[ Move "a" "c", -- a@[3, 2] b@[] c@[1]
Move "a" "b", -- a@[3] b@[2] c@[1]
Move "c" "b", -- a@[3] b@[2, 1] c@[]
Move "a" "c", -- a@[] b@[2, 1] c@[3]
Move "b" "a", -- a@[1] b@[2] c@[3]
Move "b" "c", -- a@[1] b@[] c@[3, 2]
Move "a" "c" -- a@[] b@[] c@[3, 2, 1]
]
-- Testing individual moves
describe "move" $ do
it "moves the smallest peg from peg A to peg C if peg C's disc is bigger" $ do
let emptyPegs = initPegs "a" "b" "c" 0
pegs =
emptyPegs
{ pegsPegA = (emptyPeg "a") {pegDiscs = [Disc 3, Disc 1]},
pegsPegC = (emptyPeg "c") {pegDiscs = [Disc 2]}
}
-- run the function
(moveMade, pegsAfterMove) = move pegs
-- a move should have been made
moveMade `shouldBe` Just (Move "a" "c")
-- the pegs should have changed
pegsAfterMove
`shouldBe` pegs
{ pegsPegA = (pegsPegA pegs) {pegDiscs = [Disc 3]},
pegsPegC = (pegsPegC pegs) {pegDiscs = [Disc 2, Disc 1]}
}
-- Testing constructor for a set of pegs
describe "initPegs" $ do
it "creates pegs with labels and fills the first peg with discs" $ do
initPegs "a" "b" "c" 3
`shouldBe` Pegs
{ pegsPegA = Peg {pegLabel = "a", pegDiscs = [Disc 3, Disc 2, Disc 1]},
pegsPegB = Peg {pegLabel = "b", pegDiscs = []},
pegsPegC = Peg {pegLabel = "c", pegDiscs = []}
}
-- Testing constructor for a peg with discs
describe "fillPeg" $ do describe "fillPeg" $ do
it "creates a list of disks from biggest to smallest" $ do it "creates a list of disks from biggest to smallest" $ do
fillPeg "a" 3 fillPeg "a" 3
`shouldBe` Peg `shouldBe` Peg
{ pegLabel = "a", { pegLabel = "a",
pegDiscs = pegDiscs = [Disc 3, Disc 2, Disc 1]
[ Disc 3,
Disc 2,
Disc 1
]
} }
-- Testing constructor for a peg without discs
describe "emptyPeg" $ do
it "creates an empty peg" $ do
emptyPeg "a"
`shouldBe` Peg
{ pegLabel = "a",
pegDiscs = []
}
-- Testing constructor for a stack of discs
describe "stackDiscs" $ do
it "should create a stack of discs from largest to smallest" $ do
stackDiscs 3 `shouldBe` [Disc 3, Disc 2, Disc 1]